Rare Variants in Transcript and Potential Regulatory Regions Explain a Small Percentage of the Missing Heritability of Complex Traits in Cattle.
نویسندگان
چکیده
The proportion of genetic variation in complex traits explained by rare variants is a key question for genomic prediction, and for identifying the basis of "missing heritability"--the proportion of additive genetic variation not captured by common variants on SNP arrays. Sequence variants in transcript and regulatory regions from 429 sequenced animals were used to impute high density SNP genotypes of 3311 Holstein sires to sequence. There were 675,062 common variants (MAF>0.05), 102,549 uncommon variants (0.01<MAF<0.05), and 83,856 rare variants (MAF<0.01). We describe a novel method for estimating the proportion of the rare variants that are sequencing errors using parent-progeny duos. We then used mixed model methodology to estimate the proportion of variance captured by these different classes of variants for fat, milk and protein yields, as well as for fertility. Common sequence variants captured 83%, 77%, 76% and 84% of the total genetic variance for fat, milk, and protein yields and fertility, respectively. This was between 2 and 5% more variance than that captured from 600k SNPs on a high density chip, although the difference was not significant. Rare variants captured 3%, 0%, 1% and 14% of the genetic variance for fat, milk and protein yields, and fertility respectively, whereas pedigree explained the remaining amount of genetic variance (none for fertility). The proportion of variation explained by rare variants is likely to be under-estimated due to reduced accuracies of imputation for this class of variants. Using common sequence variants slightly improved accuracy of genomic predictions for fat and milk yield, compared to high density SNP array genotypes. However, including rare variants from transcript regions did not increase the accuracy of genomic predictions. These results suggest that rare variants recover a small percentage of the missing heritability for complex traits, however very large reference sets will be required to exploit this to improve the accuracy of genomic predictions. Our results do suggest the contribution of rare variants to genetic variation may be greater for fitness traits.
منابع مشابه
Powerful association test combining rare variant and gene expression using family data from Genetic Analysis Workshop 19
BACKGROUND Genetic association studies aim to test for disease or trait association with genetic variants, either throughout the human genome or in regions of interest. However, for most diseases and traits, the combined effects of associated genetic variants explain only a small proportion of the genetic variation. This "missing heritability" may be a result of the small effects of common vari...
متن کاملFunctional enrichments of disease variants across thousands of independent loci in eight diseases
For most complex traits, known genetic associations only explain a small fraction of the narrow sense heritability prompting intense debate on the genetic basis of complex traits. Joint analysis of all common variants together explains much of this missing heritability and reveals that large numbers of weakly associated loci are enriched in regulatory regions, but fails to identify specific reg...
متن کاملDark Matter: Are Mice the Solution to Missing Heritability?
Genome-wide association studies (GWAS) in humans have identified hundreds of single nucleotide polymorphisms associated with complex traits, yet for most traits studied, the sum total of all these identified variants fail to explain a significant portion of the heritable variation. Reasons for this "missing heritability" are thought to include the existence of rare causative variants not captur...
متن کاملCSN1S1 Gene: Allele Frequency, and the Relationship with Milk Production Traits in Three Indigenous Cattle Breeds and Holstein
CSN1S1is one of the major genes encoding milk proteins of mammals. In this study we determined allele frequencies of CSN1S1-5` flanking region as well as exon 17 variants and their effects on milk traits in three indigenous cattle breeds Mazandarani, Golpaygani (Bos indicus) and Sarabi (Bos taurus) and Holstein cattle in Iran. CSN1S1*B variant was nearly fixed in Holstein but ranged from 0.40 t...
متن کاملThe power of regional heritability analysis for rare and common variant detection: simulations and application to eye biometrical traits
Genome-wide association studies (GWAS) have provided valuable insights into the genetic basis of complex traits. However, they have explained relatively little trait heritability. Recently, we proposed a new analytical approach called regional heritability mapping (RHM) that captures more of the missing genetic variation. This method is applicable both to related and unrelated populations. Here...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PloS one
دوره 10 12 شماره
صفحات -
تاریخ انتشار 2015